Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 81(1): 174, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597936

RESUMO

Mature spermatozoa with normal morphology and motility are essential for male reproduction. The epididymis has an important role in the proper maturation and function of spermatozoa for fertilization. However, factors related to the processes involved in spermatozoa modifications are still unclear. Here we demonstrated that CCDC28A, a member of the CCDC family proteins, is highly expressed in testes and the CCDC28A deletion leads to male infertility. We found CCDC28A deletion had a mild effect on spermatogenesis. And epididymal sperm collected from Ccdc28a-/- mice showed bent sperm heads, acrosomal defects, reduced motility and decreased in vitro fertilization competence whereas their axoneme, outer dense fibers, and fibrous sheath were all normal. Furthermore, we found that CCDC28A interacted with sperm acrosome membrane-associated protein 1 (SPACA1) and glycogen synthase kinase 3a (GSK3A), and deficiencies in both proteins in mice led to bent heads and abnormal acrosomes, respectively. Altogether, our results reveal the essential role of CCDC28A in regulating sperm morphology and motility and suggesting a potential marker for male infertility.


Assuntos
Infertilidade Masculina , Motilidade dos Espermatozoides , Masculino , Animais , Camundongos , Humanos , Motilidade dos Espermatozoides/genética , Sêmen , Infertilidade Masculina/genética , Cabeça do Espermatozoide , Espermatozoides
2.
Development ; 150(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37997706

RESUMO

Sperm with normal morphology and motility are essential for successful fertilization, and the strong attachment of the sperm head-tail coupling apparatus to the nuclear envelope during spermatogenesis is required to ensure the integrity of sperm for capacitation and fertilization. Here, we report that Arrdc5 is associated with spermatogenesis. The Arrdc5 knockout mouse model showed male infertility characterized by a high bent-head rate and reduced motility in sperm, which led to capacitation defects and subsequent fertilization failure. Through mass spectrometry, we found that ARRDC5 affects spermatogenesis by affecting NDC1 and SUN5. We further found that ARRDC5 might affect the vesicle-trafficking protein SEC22A-mediated transport and localization of NDC1, SUN5 and other head-tail coupling apparatus-related proteins that are responsible for initiating the attachment of the sperm head and tail. We finally performed intracytoplasmic sperm injection as a way to explore therapeutic strategies. Our findings demonstrate the essential role and the underlying molecular mechanism of ARRDC5 in anchoring the sperm head to the tail during spermatogenesis.


Assuntos
Infertilidade Masculina , Sêmen , Humanos , Animais , Camundongos , Masculino , Sêmen/metabolismo , Espermatogênese/genética , Espermatozoides/metabolismo , Cabeça do Espermatozoide/metabolismo , Proteínas/metabolismo , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Camundongos Knockout , Proteínas de Membrana/metabolismo
3.
Development ; 150(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37218508

RESUMO

The accumulation and storage of maternal mRNA is crucial for oocyte maturation and embryonic development. PATL2 is an oocyte-specific RNA-binding protein, and previous studies have confirmed that PATL2 mutation in humans and knockout mice cause oocyte maturation arrest or embryonic development arrest, respectively. However, the physiological function of PATL2 in the process of oocyte maturation and embryonic development is largely unknown. Here, we report that PATL2 is highly expressed in growing oocytes and couples with EIF4E and CPEB1 to regulate maternal mRNA expression in immature oocytes. The germinal vesicle oocytes from Patl2-/- mice exhibit decreasing maternal mRNA expression and reduced levels of protein synthesis. We further confirmed that PATL2 phosphorylation occurs in the oocyte maturation process and identified the S279 phosphorylation site using phosphoproteomics. We found that the S279D mutation decreased the protein level of PATL2 and led to subfertility in Palt2S279D knock-in mice. Our work reveals the previously unrecognized role of PATL2 in regulating the maternal transcriptome and shows that phosphorylation of PATL2 leads to the regulation of PATL2 protein levels via ubiquitin-mediated proteasomal degradation in oocytes.


Assuntos
Fator de Iniciação 4E em Eucariotos , Proteínas Nucleares , RNA Mensageiro Estocado , Proteínas de Ligação a RNA , Animais , Feminino , Humanos , Camundongos , Gravidez , Fator de Iniciação 4E em Eucariotos/metabolismo , Homeostase , Camundongos Knockout , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , RNA Mensageiro/metabolismo , RNA Mensageiro Estocado/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
4.
EMBO Mol Med ; 15(6): e17177, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37052235

RESUMO

Oocyte maturation arrest is one of the important causes of female infertility, but the genetic factors remain largely unknown. PABPC1L, a predominant poly(A)-binding protein in Xenopus, mouse, and human oocytes and early embryos prior to zygotic genome activation, plays a key role in translational activation of maternal mRNAs. Here, we identified compound heterozygous and homozygous variants in PABPC1L that are responsible for female infertility mainly characterized by oocyte maturation arrest in five individuals. In vitro studies demonstrated that these variants resulted in truncated proteins, reduced protein abundance, altered cytoplasmic localization, and reduced mRNA translational activation by affecting the binding of PABPC1L to mRNA. In vivo, three strains of Pabpc1l knock-in (KI) female mice were infertile. RNA-sequencing analysis showed abnormal activation of the Mos-MAPK pathway in the zygotes of KI mice. Finally, we activated this pathway in mouse zygotes by injecting human MOS mRNA, and this mimicked the phenotype of KI mice. Our findings reveal the important roles of PABPC1L in human oocyte maturation and add a genetic potential candidate gene to be screened for causes of infertility.


Assuntos
Infertilidade Feminina , Feminino , Humanos , Camundongos , Animais , Infertilidade Feminina/genética , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Oócitos , Homozigoto , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
5.
Hum Genet ; 142(6): 735-748, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36995441

RESUMO

Asthenozoospermia is one of the main factors leading to male infertility, but the genetic mechanisms have not been fully elucidated. Variants in the androglobin (ADGB) gene were identified in an infertile male characterized by asthenozoospermia. The variants disrupted the binding of ADGB to calmodulin. Adgb-/- male mice were infertile due to reduced sperm concentration (< 1 × 106 /mL) and motility. Spermatogenesis was also abnormal, with malformation of both elongating and elongated spermatids, and there was an approximately twofold increase in apoptotic cells in the cauda epididymis. These exacerbated the decline in sperm motility. It is surprising that ICSI with testicular spermatids allows fertilization and eventually develops into blastocyst. Through mass spectrometry, we identified 42 candidate proteins that are involved in sperm assembly, flagella formation, and sperm motility interacting with ADGB. In particular, CFAP69 and SPEF2 were confirmed to bind to ADGB. Collectively, our study suggests the potential important role of ADGB in human fertility, revealing its relevance to spermatogenesis and infertility. This expands our knowledge of the genetic causes of asthenozoospermia and provides a theoretical basis for using ADGB as an underlying genetic marker for infertile males.


Assuntos
Astenozoospermia , Infertilidade Masculina , Animais , Humanos , Masculino , Camundongos , Astenozoospermia/genética , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/metabolismo
6.
Hum Reprod ; 38(1): 168-179, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36355624

RESUMO

STUDY QUESTION: Can new genetic factors responsible for male infertility be identified, especially for those characterized by asthenospermia despite normal sperm morphology? SUMMARY ANSWER: We identified the novel pathogenetic gene IQ motif and ubiquitin-like domain-containing (IQUB) as responsible for male infertility characterized by asthenospermia, involving sperm radial spoke defects. WHAT IS KNOWN ALREADY: To date, only a few genes have been found to be responsible for asthenospermia with normal sperm morphology. Iqub, encoding the IQUB protein, is highly and specifically expressed in murine testes and interacts with the proteins radial spoke head 3 (RSPH3), CEP295 N-terminal like (CEP295NL or DDC8), glutathione S-transferase mu 1 (GSTM1) and outer dense fiber of sperm tails 1 (ODF1) in the yeast two-hybrid system. STUDY DESIGN, SIZE, DURATION: The IQUB variant was identified by whole-exome sequencing in a cohort of 126 male infertility patients with typical asthenospermia recruited between 2015 and 2020. Knockout (KO) and knockin (KI) mouse models, scanning and transmission electron microscopy (TEM), and other functional assays were performed, between 2019 and 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS: The IQUB variant was identified by whole-exome sequencing and confirmed by Sanger sequencing. Iqub KO and KI mice were constructed to mimic the phenotype of the affected individual. After recapitulating the phenotype of human male infertility, scanning and TEM were performed to check the ultrastructure of the sperm. Western blot and co-immunoprecipitation were performed to clarify the pathological mechanism of the IQUB variant. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a homozygous nonsense IQUB variant (NM_001282855.2:c.942T> G(p.Tyr314*)) from an infertile male. Iqub KO and KI mice mimicked the infertility phenotype and confirmed IQUB to be the pathogenetic gene. Scanning and TEM showed that sperm of both the mouse models and the affected individual had radial spoke defects. The functional assay suggested that IQUB may recruit calmodulin in lower Ca2+ environments to facilitate the normal assembly of radial spokes by inhibiting the activity of RSPH3/p-ERK1/2 (a nontypical AKAP (A-Kinase Anchoring Protein) forming by RSPH3 and phosphorylation of extracellular signal-regulated kinase 1 and 2 (p-ERK1/2)). LIMITATIONS, REASONS FOR CAUTION: Additional cases are needed to confirm the genetic contribution of IQUB variants to male infertility. In addition, because no IQUB antibody is available for immunofluorescence and the polyclonal antibody we generated was only effective in western blotting, immunostaining for IQUB was not performed in this study. Therefore, this study lacks direct in vivo proof to confirm the effect of the variant on IQUB protein level. WIDER IMPLICATIONS OF THE FINDINGS: Our results suggest a causal relation between IQUB variants and male infertility owing to asthenospermia, and partly clarify the pathological mechanism of IQUB variants. This expands our knowledge of the genes involved in human sperm asthenospermia and potentially provides a new genetic marker for male infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the National Key Research and Development Program of China (2021YFC2700100), the National Natural Science Foundation of China (32130029, 82171643, 81971450, 82001538, and 81971382) and the Guangdong Science and Technology Department Guangdong-Hong Kong-Macao Joint Innovation Project (2020A0505140003). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Astenozoospermia , Infertilidade Masculina , Humanos , Masculino , Animais , Camundongos , Fosforilação , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Sêmen/metabolismo , Camundongos Knockout , Infertilidade Masculina/patologia , Espermatozoides/metabolismo , Astenozoospermia/metabolismo
7.
Clin Genet ; 103(3): 352-357, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36373164

RESUMO

Ovarian dysfunction, including premature ovarian insufficiency and decreased ovarian reserve, affects the ovarian reserve and is one of the leading causes of female infertility. More and more cases of ovarian dysfunction are associated with genetic factors. Here, we identified eight potential variants in five genes (MSH4, HFM1, SYCE1, FSHR, and C14orf39) from six independent families by exome sequencing. The splice-site variants in SYCE1 and MSH4 affected canonical splicing isoforms, leading to missing protein domains or premature termination. Our findings expand the mutational spectrum of ovarian dysfunction and provide potential biomarkers for future genetic counseling and for more personalized treatments. Exome sequencing was shown to be a useful tool to better dissect the genetic basis for ovarian dysfunction and yielded a genetic diagnosis in about 5.0% (6/124) of cases in a cohort of 124 patients with ovarian dysfunction.


Assuntos
Menopausa Precoce , Insuficiência Ovariana Primária , Humanos , Feminino , Insuficiência Ovariana Primária/diagnóstico , Insuficiência Ovariana Primária/genética , Menopausa Precoce/genética , Mutação , Testes Genéticos
8.
Hum Reprod ; 37(7): 1394-1405, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35551387

RESUMO

STUDY QUESTION: Are there new genetic factors responsible for male infertility with normal sperm quantity and morphology? SUMMARY ANSWER: We identified the bi-allelic variants in KCNU1 and confirmed it a novel pathogenetic gene for male infertility mainly due to impaired sperm acrosome reactions (ARs). WHAT IS KNOWN ALREADY: Until now, the underlying genetic determinants for male affected individuals exhibiting normal sperm quantity and morphology have been largely unknown. Potassium/calcium-activated channel subfamily U member 1 (KCNU1) is a sperm-specific potassium channel. The Kcnu1 null mutation in male mice causes infertility due to the impaired progressive motility and AR. STUDY DESIGN, SIZE, DURATION: We recruited a cohort of 126 male infertility individuals with typical asthenospermia or fertilization failure and focused on two infertile males from two consanguineous families from 2015 to 2020; whole-exome sequencing and homozygosity mapping were performed. We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1. Then, we generated a knock-in (KI) mouse model in September 2020 and have now carried out functional studies and possible treatment strategies. PARTICIPANTS/MATERIALS, SETTING, METHODS: The affected individuals with infertility were recruited from the Shanghai Ninth Hospital affiliated to Shanghai Jiao Tong University. Genomic DNA from the affected individual was extracted from peripheral blood. Whole-exome sequencing, homozygosity mapping and in silico analyses were used to screen and identify KCNU1 variants, and the variants were confirmed by Sanger sequencing. We used C57BL/6N mouse to construct KI mouse model to mimic the reproductive phenotype in vivo. We performed functional experiments by western blotting, AR assay and immunofluorescent Staining. Finally, we performed IVF and ICSI to explore the treatment strategies. MAIN RESULTS AND THE ROLE OF CHANCE: We identified a homozygous missense variant (c.2144A>G, p.His715Arg) and a homozygous donor splice-site variant (c.1295 + 3A>C, p.Val405Glyfs*8) in KCNU1 in two infertile males. We demonstrated that the splice-site variant affected normal alternative splicing of KCNU1, thus leading to the loss of function of KCNU1. Meanwhile, the missense pathogenic variant reduced the KCNU1 protein levels in sperm of both the affected individual and the KI mouse model, resulting in impaired ARs and male infertility. Intracytoplasmic sperm injection was able to rescue the deficiencies. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: The exact molecular mechanism of KCNU1 and pathways need to be further explore in the future. WIDER IMPLICATIONS OF THE FINDINGS: This is the first report that establishes a causal relationship between KCNU1 deficiency and male infertility, confirming the critical role of KCNU1 in human reproduction. Our findings expand our knowledge of the genes that play critical roles in the human sperm AR and provide a new genetic marker for infertility. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the SHIPM-pi fund no. JY201801 from the Shanghai Institute of Precision Medicine, Ninth People's Hospital Shanghai Jiao Tong University School of Medicine, the National Natural Science Foundation of China (81725006, 81771649, 81822019, 81771581, 81971450, 81971382, 82001538 and 82071642). The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Reação Acrossômica , Infertilidade Masculina , Canais de Potássio Ativados por Cálcio de Condutância Alta , Reação Acrossômica/genética , Animais , China , Humanos , Infertilidade Masculina/genética , Canais de Potássio Ativados por Cálcio de Condutância Alta/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sêmen , Espermatozoides
9.
Eur J Hum Genet ; 29(9): 1396-1404, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33495594

RESUMO

PANX1, one of the members of the pannexin family, is a highly glycosylated channel-forming protein. Recently, we identified heterozygous variants in PANX1 that follow an autosomal dominant inheritance pattern and cause female infertility characterized by oocyte death. In this study, we screened for novel PANX1 variants in patients with the phenotype of oocyte death and discovered a new type of inheritance pattern accompanying PANX1 variants. We identified two novel homozygous missense variants in PANX1 [NM_015368.4 c.712T>C (p.(Ser238Pro) and c.899G>A (p.(Arg300Gln))] associated with the oocyte death phenotype in two families. Both of the homozygous variants altered the PANX1 glycosylation pattern in cultured cells, led to aberrant PANX1 channel activation, and resulted in mouse oocyte death after fertilization in vitro. It is worth noting that the destructive effect of the two homozygous variants on PANX1 function was weaker than that caused by the recently reported heterozygous variants. Our findings enrich the variational spectrum of PANX1 and expand the inheritance pattern of PANX1 variants to an autosomal recessive mode. This highlights the critical role of PANX1 in human oocyte development and helps us to better understand the genetic basis of female infertility due to oocyte death.


Assuntos
Conexinas/genética , Infertilidade Feminina/genética , Proteínas do Tecido Nervoso/genética , Oócitos/metabolismo , Adulto , Animais , Morte Celular , Células Cultivadas , Conexinas/metabolismo , Feminino , Genes Recessivos , Células HeLa , Homozigoto , Humanos , Infertilidade Feminina/patologia , Camundongos , Camundongos Endogâmicos ICR , Mutação , Proteínas do Tecido Nervoso/metabolismo , Oócitos/patologia , Xenopus laevis
10.
Sci Adv ; 6(35): eaaz4796, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32923619

RESUMO

Early embryonic arrest is a challenge for in vitro fertilization (IVF). No genetic factors were previously revealed in the sperm-derived arrest of embryonic development. Here, we reported two infertile brothers presenting normal in conventional semen analysis, but both couples had no embryos for transfer after several IVF and intracytoplasmic sperm injection (ICSI). Whole-exome sequencing identified a homozygous missense mutation of ACTL7A in both brothers. This mutation is deleterious and causes sperm acrosomal ultrastructural defects. The Actl7a knock-in mouse model was generated, and male mutated mice showed sperm acrosomal defects, which were completely consistent with the observations in patients. Furthermore, the sperm from ACTL7A/Actl7a-mutated men and mice showed reduced expression and abnormal localization of PLCζ as a potential cause of embryonic arrest and failure of fertilization. Artificial oocyte activation could successfully overcome the Actl7a-mutated sperm-derived infertility, which is meaningful in the future practice of IVF/ICSI for the ACTL7A-associated male infertility.

11.
Artigo em Inglês | MEDLINE | ID: mdl-32373069

RESUMO

Metabolic profile of follicular fluid (FF) has been investigated to look for biomarkers for oocyte quality. Resolvin E1 (RvE1), a potent pro-resolving mediator, was reported to have protective action in cell function. The study aimed to examine the predictive value of RvE1 for oocyte quality and to explore the cellular mechanism of RvE1 in improving oocyte competence. Metabolic profiles of 80 FF samples showed a higher level of RvE1 in group A (blastocysts scored ≥ B3BC and B3CB according to Gardner's blastocyst scoring system, N = 36) than that of group B (blastocysts scored < B3BC and B3CB, N = 44, P = 0.0018). The receiver operating characteristic (ROC) curve analysis showed that RvE1 level in FF below 8.96 pg/ml (AUC:0.75; 95%CI: 0.64-0.86; P = 0.00012) could predict poor oocyte quality with specificity of 97.22%, suggesting RvE1 as a potential biomarker to exclude inferior oocytes. Besides, the level of RvE1 was found to be significantly lower in FF than in serum (57.49 to 17.62 pg/ml; P=.0037) and was gradually accumulated in the culture medium of cumulus cells (CCs) during cell culture, which indicated that RvE1 came from both blood exudates and local secretion. The in vitro experiment revealed thecellular mechanism of RvE1 in improvingoocyte qualityby decreasing the cumulus cellapoptotic rate and increasing cell viability and proliferation. It is the first time thatthe role of RvE1 in reproduction is explored. In conclusion, RvE1 is valuable as a potential exclusive biomarker for oocyte selection andplays a role in improving oocyte quality.


Assuntos
Blastocisto/citologia , Células do Cúmulo/citologia , Ácido Eicosapentaenoico/análogos & derivados , Líquido Folicular/metabolismo , Oócitos/citologia , Oogênese , Folículo Ovariano/citologia , Adulto , Blastocisto/metabolismo , Proliferação de Células , Células Cultivadas , Células do Cúmulo/metabolismo , Ácido Eicosapentaenoico/metabolismo , Feminino , Fertilização In Vitro , Seguimentos , Humanos , Técnicas de Maturação in Vitro de Oócitos , Oócitos/metabolismo , Folículo Ovariano/metabolismo
13.
Ann Hum Genet ; 84(1): 46-53, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31495922

RESUMO

Intellectual disability (ID) describes a wide range of serious human diseases caused by defects in central nervous system development and function. Some mutant genes have been found to be associated with these diseases, but not all cases can be explained, thus suggesting that other disease-causing genes have not yet been discovered. Sialic acid is involved in a number of key biological processes, including embryo formation, nerve cell growth, and cancer cell metastasis, and very recently it has been suggested that N-acetylneuraminic acid synthase-mediated synthesis of sialic acid is required for brain and skeletal development. CMP-sialic acid synthetase (CMAS) is one of four enzymes involved in NeuNAc metabolism, as it catalyzes the formation of CMP-NeuNAc. Before the present study, no links between mutations in CMAS and incidences of human ID had been reported. In the current study, we recruited a recessive nonsyndromic ID pedigree with consanguineous marriage in which all patients have typical clinical manifestations of ID. We identified the NM_018686.3:c.563G > A (p.Arg188His) substitution in CMAS as being responsible for the disease in this family. Conservation analysis, structural prediction, and enzyme activity experiments demonstrated that (p.Arg188His) influences protein dimerization and alters CMAS enzyme activity. Our results offer a new orientation for future research and clinical diagnosis.


Assuntos
Genes Recessivos , Homozigoto , Deficiência Intelectual/etiologia , Mutação , N-Acilneuraminato Citidililtransferase/genética , Adulto , Sequência de Aminoácidos , Consanguinidade , Feminino , Seguimentos , Humanos , Deficiência Intelectual/patologia , Masculino , Pessoa de Meia-Idade , Linhagem , Prognóstico , Homologia de Sequência , Adulto Jovem
14.
Reprod Biol Endocrinol ; 17(1): 96, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31744497

RESUMO

BACKGROUND: Previous work demonstrated that there are numerous miRNAs in human follicular fluids, some of which are associated with reproductive diseases. In the current study, we sought to determine whether microRNAs (miRNAs) in the follicular fluid (FF) are differentially expressed between women with and without endometriosis and to uncover the association of miRNAs with the oocyte and embryonic development potential. METHODS: FF was harvested from 30 women with endometriosis and 30 women without who underwent in vitro fertilization treatment at the University Hospital between February and December 2016. The FF samples were subjected to miRNA profiling and validation via quantitative reverse transcription polymerase chain reaction analysis. Mouse/human metaphase-I (MI) oocytes were harvested and micro-injected with an miR-451 inhibitor, and the effects of miR-451 knockdown on Wnt/WNT signalling genes were investigated. RESULTS: Oocyte number, fertilization rate, and number of available embryos were decreased significantly in women with endometriosis relative to those without endometriosis. Hsa-miR-451 in FF was downregulated in endometriosis patients relative to control subjects (P < 0.01). Moreover, the proportions of mouse/human MI oocytes that developed into 2-pronuclei (2PN), 2-cell, 8-10-cell and blastocyst-stage embryos were affected by miR-451 knockdown in mouse/human oocytes. Components of the Wnt signalling pathway were aberrantly expressed in the mouse/human oocytes and embryos in the miR-451 inhibitor-injected group. CONCLUSIONS: miR-451 was downregulated in FF samples from endometriosis patients and was modestly effective in distinguishing endometriosis patients from non-endometriosis patients. miR-451 downregulation in mouse and human oocytes affected pre-implantation embryogenesis by suppressing the Wnt signalling pathway. This miRNA might serve as a novel biomarker of oocyte and embryo quality in assisted reproductive treatment.


Assuntos
Regulação para Baixo , Desenvolvimento Embrionário/genética , Endometriose/genética , Líquido Folicular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Adulto , Animais , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Humanos , Camundongos , Oócitos/citologia , Oócitos/metabolismo , Via de Sinalização Wnt/genética
15.
Reprod Fertil Dev ; 30(10): 1277-1285, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29614240

RESUMO

Ectonucleotide pyrophosphatase-phosphodiesterase 3 (ENPP3), a protein detected in the human uterus, has been found to play an important role in the development and invasion of tumours. It was recently discovered that ENPP3 was upregulated during the window of implantation in the human endometrium but its functional relevance remains elusive. The objective was to determine ENPP3 expression in human endometrium and its roles in endometrial receptivity and embryo implantation. ENPP3 expression was analysed using immunohistochemistry and western blot assay. The effects of ENPP3 on embryo implantation were evaluated using a BeWo cell (a human choriocarcinoma cell line) spheroid attachment assay and BeWo cells were dual cultured with Ishikawa cells transfected with lentiviral vectors (LV5-NC or LV5-ENPP3) to mimic embryo implantation in a Transwell model. The effects of endometrial ENPP3 on factors related to endometrial receptivity were also determined. The results showed that ENPP3 was expressed in human endometrial epithelial cells and its expression levels changed during the menstrual cycle, peaking in the mid-secretory phase, corresponding to the time of embryo implantation. The overexpression of endometrial ENPP3 not only increased the embryo implantation rate but also had positive effects on the expression of factors related to endometrial receptivity in human endometrial cells. The results indicate that ENPP3 levels undergo cyclic changes in the endometrium and affect embryo adhesion and invasion via altering the expression of implantation factors in the human endometrium. Therefore, ENPP3 may play an important role in embryo implantation and may be a unique biomarker of endometrial receptivity.


Assuntos
Implantação do Embrião/fisiologia , Endométrio/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Adulto , Biomarcadores/metabolismo , Western Blotting , Adesão Celular , Linhagem Celular , Movimento Celular , Implantação do Embrião/genética , Células Epiteliais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , Modelos Biológicos , Diester Fosfórico Hidrolases/genética , Gravidez , Pirofosfatases/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Esferoides Celulares/metabolismo
16.
Reprod Biomed Online ; 37(1): 25-32, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29703434

RESUMO

RESEARCH QUESTION: Are miRNAs found in follicular fluid related to blastocyst formation from the corresponding oocytes? DESIGN: In this study, 91 individual follicular fluid samples from single follicles containing mature oocytes from 91 women were collected and classified into group 1 (n = 38) with viable blastocysts, and group 2 (n = 53) with no blastocyst. TaqMan human miRNA cards and quantitative reverse transcription polymerase chain reaction were used to identify differently expressed follicular fluid miRNAs between the two groups. RESULTS: We found MIR-663B to be significantly differentially expressed in follicular fluid of oocytes that yielded viable blastocysts versus those that did not develop into blastocysts (14.16 ± 7.00 versus 23.68 ± 17.02; P = 0.019), as well as for those which develop into blastocysts with good morphology versus those with poor morphology (11.69 ± 3.49 versus 20.16 ± 9.33; P = 0.003). CONCLUSIONS: MIR-663B expression levels in human follicular fluid samples were significantly negatively related to viable blastocyst formation and may become an objective evaluation criterion for embryo development potential after IVF.


Assuntos
Blastocisto/metabolismo , Desenvolvimento Embrionário/genética , Líquido Folicular/metabolismo , MicroRNAs/metabolismo , Adulto , Feminino , Humanos , MicroRNAs/genética , Oócitos/metabolismo , Oogênese/fisiologia , Injeções de Esperma Intracitoplásmicas
17.
Am J Hum Genet ; 99(3): 744-752, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27545678

RESUMO

Early embryonic arrest is one of the major causes of female infertility. However, because of difficulties in phenotypic evaluation, genetic determinants of human early embryonic arrest are largely unknown. With the development of assisted reproductive technology, the phenotype of early human embryonic arrest can now be carefully evaluated. Here, we describe a consanguineous family with a recessive inheritance pattern of female infertility characterized by recurrent early embryonic arrest in cycles of in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). We have identified a homozygous PADI6 nonsense mutation (c.1141C>T [p.Gln381(∗)]) that is responsible for the phenotype. Mutational analysis of PADI6 in a cohort of 36 individuals whose embryos displayed developmental arrest identified two affected individuals with compound-heterozygous mutations (c.2009_2010del [p.Glu670Glyfs(∗)48] and c.633T>A [p.His211Gln]; c.1618G>A [p.Gly540Arg] and c.970C>T [p.Gln324(∗)]). Immunostaining indicated a lack of PADI6 in affected individuals' oocytes. In addition, the amount of phosphorylated RNA polymerase II and expression levels of seven genes involved in zygotic genome activation were reduced in the affected individuals' embryos. This phenotype is consistent with Padi6 knockout mice. These findings deepen our understanding of the genetic basis of human early embryonic arrest, which has been a largely ignored Mendelian phenotype. Our findings lay the foundation for uncovering other genetic causes of infertility resulting from early embryonic arrest.


Assuntos
Perda do Embrião/genética , Hidrolases/genética , Infertilidade Feminina/complicações , Infertilidade Feminina/genética , Mutação , Adulto , Animais , Códon sem Sentido/genética , Consanguinidade , Perda do Embrião/patologia , Feminino , Fertilização In Vitro , Homozigoto , Humanos , Hidrolases/deficiência , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Fenótipo , Fosforilação , Proteína-Arginina Desiminase do Tipo 6 , Desiminases de Arginina em Proteínas , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Injeções de Esperma Intracitoplásmicas , Falha de Tratamento
18.
J Med Genet ; 53(10): 662-71, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27273344

RESUMO

BACKGROUND: TUBB8 is a primate-specific ß-tubulin isotype whose expression is confined to oocytes and the early embryo. We previously found that mutations in TUBB8 caused oocyte maturation arrest. The objective was to describe newly discovered mutations in TUBB8 and to characterise the accompanying spectrum of phenotypes and modes of inheritance. METHODS AND RESULTS: Patients with oocyte maturation arrest were sequenced with respect to TUBB8. We investigated the effects of identified mutations in vitro, in cultured cells and in mouse oocytes. Seven heterozygous missense and two homozygous mutations were identified. These mutations cause a range of folding defects in vitro, different degrees of microtubule disruption upon expression in cultured cells and interfere to varying extents in the proper assembly of the meiotic spindle in mouse oocytes. Several of the newly discovered TUBB8 mutations result in phenotypic variability. For example, oocytes harbouring any of three missense mutations (I210V, T238M and N348S) could extrude the first polar body. Moreover, they could be fertilised, although the ensuing embryos became developmentally arrested. Surprisingly, oocytes from patients harbouring homozygous TUBB8 mutations that in either case preclude the expression of a functional TUBB8 polypeptide nonetheless contained identifiable spindles. CONCLUSIONS: Our data substantially expand the range of dysfunctional oocyte phenotypes incurred by mutation in TUBB8, underscore the independent nature of human oocyte meiosis and differentiation, extend the class of genetic diseases known as the tubulinopathies and provide new criteria for the qualitative evaluation of meiosis II (MII) oocytes for in vitro fertilization (IVF).


Assuntos
Infertilidade Feminina/metabolismo , Mutação , Oócitos/metabolismo , Fenótipo , Tubulina (Proteína)/genética , Animais , Embrião de Mamíferos/metabolismo , Feminino , Humanos , Infertilidade Feminina/genética , Camundongos , Fuso Acromático
19.
Int J Pediatr Otorhinolaryngol ; 84: 43-7, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27063751

RESUMO

INTRODUCTION: Hearing loss is a common sensory impairment. Several genetic loci or genes responsible for non-syndrome hearing loss have been identified, including the well-known deafness genes GJB2, MT-RNR1 and SLC26A4. MYO3A belongs to the myosin superfamily. Previously only three mutations in this gene have been found in an Isreali family with DFNB30, in which patients demonstrated progressive hearing loss. METHODS: In this study, we characterized a consanguineous Kazakh family with congenital hearing loss. By targeted sequence capture and next-generation sequencing, we identified a homozygous mutation and did bioinformatics analysis to this mutation. RESULTS: A homozygous mutation, MYO3A:c.1841C>T (p.S614F), was identified to be responsible for the disease. Ser614 is located in the motor domain of MYO3A that is highly conserved among different species. Molecular modeling predicts that the conserved Ser614 may play an important role in maintaining the stability of ß-sheet and the interaction between neighboring ß-strand. CONCLUSIONS: This is the second report on MYO3A mutations in deafness and the first report in China. The finding help facilitate establishing a better relationship between MYO3A mutation and hearing phenotypes.


Assuntos
Surdez/genética , Perda Auditiva Neurossensorial/genética , Cadeias Pesadas de Miosina/genética , Miosina Tipo III/genética , Pré-Escolar , China , Consanguinidade , Surdez/congênito , Surdez/etnologia , Feminino , Marcadores Genéticos , Perda Auditiva Neurossensorial/congênito , Perda Auditiva Neurossensorial/etnologia , Homozigoto , Humanos , Cazaquistão/etnologia , Masculino , Mutação de Sentido Incorreto
20.
N Engl J Med ; 374(3): 223-32, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26789871

RESUMO

Background Human reproduction depends on the fusion of a mature oocyte with a sperm cell to form a fertilized egg. The genetic events that lead to the arrest of human oocyte maturation are unknown. Methods We sequenced the exomes of five members of a four-generation family, three of whom had infertility due to oocyte meiosis I arrest. We performed Sanger sequencing of a candidate gene, TUBB8, in DNA samples from these members, additional family members, and members of 23 other affected families. The expression of TUBB8 and all other ß-tubulin isotypes was assessed in human oocytes, early embryos, sperm cells, and several somatic tissues by means of a quantitative reverse-transcriptase-polymerase-chain-reaction assay. We evaluated the effect of the TUBB8 mutations on the assembly of the heterodimer consisting of one α-tubulin polypeptide and one ß-tubulin polypeptide (α/ß-tubulin heterodimer) in vitro, on microtubule architecture in HeLa cells, on microtubule dynamics in yeast cells, and on spindle assembly in mouse and human oocytes. Results We identified seven mutations in the primate-specific gene TUBB8 that were responsible for oocyte meiosis I arrest in 7 of the 24 families. TUBB8 expression is unique to oocytes and the early embryo, in which this gene accounts for almost all the expressed ß-tubulin. The mutations affect chaperone-dependent folding and assembly of the α/ß-tubulin heterodimer, disrupt microtubule behavior on expression in cultured cells, alter microtubule dynamics in vivo, and cause catastrophic spindle-assembly defects and maturation arrest on expression in mouse and human oocytes. Conclusions TUBB8 mutations have dominant-negative effects that disrupt microtubule behavior and oocyte meiotic spindle assembly and maturation, causing female infertility. (Funded by the National Basic Research Program of China and others.).


Assuntos
Infertilidade Feminina/genética , Meiose/genética , Microtúbulos/patologia , Mutação , Oócitos/fisiologia , Fuso Acromático/fisiologia , Tubulina (Proteína)/genética , Adulto , Animais , Feminino , Humanos , Meiose/fisiologia , Camundongos , Microtúbulos/fisiologia , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...